Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365243

RESUMO

Ruminants are essential for global food security, but these are major sources of the greenhouse gas methane. Methane yield is controlled by the cycling of molecular hydrogen (H2), which is produced during carbohydrate fermentation and is consumed by methanogenic, acetogenic, and respiratory microorganisms. However, we lack a holistic understanding of the mediators and pathways of H2 metabolism and how this varies between ruminants with different methane-emitting phenotypes. Here, we used metagenomic, metatranscriptomic, metabolomics, and biochemical approaches to compare H2 cycling and reductant disposal pathways between low-methane-emitting Holstein and high-methane-emitting Jersey dairy cattle. The Holstein rumen microbiota had a greater capacity for reductant disposal via electron transfer for amino acid synthesis and propionate production, catalyzed by enzymes such as glutamate synthase and lactate dehydrogenase, and expressed uptake [NiFe]-hydrogenases to use H2 to support sulfate and nitrate respiration, leading to enhanced coupling of H2 cycling with less expelled methane. The Jersey rumen microbiome had a greater proportion of reductant disposal via H2 production catalyzed by fermentative hydrogenases encoded by Clostridia, with H2 mainly taken up through methanogenesis via methanogenic [NiFe]-hydrogenases and acetogenesis via [FeFe]-hydrogenases, resulting in enhanced methane and acetate production. Such enhancement of electron incorporation for metabolite synthesis with reduced methanogenesis was further supported by two in vitro measurements of microbiome activities, metabolites, and public global microbiome data of low- and high-methane-emitting beef cattle and sheep. Overall, this study highlights the importance of promoting alternative H2 consumption and reductant disposal pathways for synthesizing host-beneficial metabolites and reducing methane production in ruminants.


Assuntos
Euryarchaeota , Substâncias Redutoras , Bovinos , Ovinos , Animais , Substâncias Redutoras/metabolismo , Metano/metabolismo , Hidrogênio/metabolismo , Ruminantes/metabolismo , Fermentação , Euryarchaeota/metabolismo , Rúmen/metabolismo
2.
J Biol Chem ; 299(9): 105094, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507015

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that degrade the insoluble crystalline polysaccharides cellulose and chitin. Besides the H2O2 cosubstrate, the cleavage of glycosidic bonds by LPMOs depends on the presence of a reductant needed to bring the enzyme into its reduced, catalytically active Cu(I) state. Reduced LPMOs that are not bound to substrate catalyze reductant peroxidase reactions, which may lead to oxidative damage and irreversible inactivation of the enzyme. However, the kinetics of this reaction remain largely unknown, as do possible variations between LPMOs belonging to different families. Here, we describe the kinetic characterization of two fungal family AA9 LPMOs, TrAA9A of Trichoderma reesei and NcAA9C of Neurospora crassa, and two bacterial AA10 LPMOs, ScAA10C of Streptomyces coelicolor and SmAA10A of Serratia marcescens. We found peroxidation of ascorbic acid and methyl-hydroquinone resulted in the same probability of LPMO inactivation (pi), suggesting that inactivation is independent of the nature of the reductant. We showed the fungal enzymes were clearly more resistant toward inactivation, having pi values of less than 0.01, whereas the pi for SmAA10A was an order of magnitude higher. However, the fungal enzymes also showed higher catalytic efficiencies (kcat/KM(H2O2)) for the reductant peroxidase reaction. This inverse linear correlation between the kcat/KM(H2O2) and pi suggests that, although having different life spans in terms of the number of turnovers in the reductant peroxidase reaction, LPMOs that are not bound to substrates have similar half-lives. These findings have not only potential biological but also industrial implications.


Assuntos
Oxigenases de Função Mista , Peroxidases , Polissacarídeos , Substâncias Redutoras , Ácido Ascórbico/metabolismo , Biocatálise , Cobre/metabolismo , Estabilidade Enzimática , Meia-Vida , Peróxido de Hidrogênio/metabolismo , Cinética , Oxigenases de Função Mista/metabolismo , Neurospora crassa/enzimologia , Neurospora crassa/metabolismo , Peroxidases/metabolismo , Polissacarídeos/metabolismo , Substâncias Redutoras/metabolismo , Serratia marcescens/enzimologia , Serratia marcescens/metabolismo , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/metabolismo
3.
Syst Biol Reprod Med ; 69(1): 20-31, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36215401

RESUMO

Despite the long-standing notion of "oxidative stress," as the main mediator of many diseases including male infertility induced by increased reactive oxygen species (ROS), recent evidence suggests that ROS levels are also increased by "reductive stress," due to over-accumulation of reductants. Damaging mechanisms, like guanidine oxidation followed by DNA fragmentation, could be observed following reductive stress. Excessive accumulation of the reductants may arise from excess dietary supplementation over driving the one-carbon cycle and transsulfuration pathway, overproduction of NADPH through the pentose phosphate pathway (PPP), elevated levels of GSH leading to impaired mitochondrial oxidation, or as a result NADH accumulation. In addition, lower availability of oxidized reductants like NAD+, oxidized glutathione (GSSG), and oxidized thioredoxins (Trx-S2) induce electron leakage leading to the formation of hydrogen peroxide (H2O2). In addition, a lower level of NAD+ impairs poly (ADP-ribose) polymerase (PARP)-regulated DNA repair essential for proper chromatin integrity of sperm. Because of the limited studies regarding the possible involvement of reductive stress, antioxidant therapy remains a central approach in the treatment of male infertility. This review put forward the concept of reductive stress and highlights the potential role played by reductive vs oxidative stress at pre-and post-testicular levels and considering dietary supplementation.


Assuntos
Glutationa , Peróxido de Hidrogênio , Masculino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , NAD/metabolismo , Substâncias Redutoras/metabolismo , Sêmen/metabolismo , Oxirredução , Estresse Oxidativo , Espermatozoides/metabolismo
4.
BMC Biol ; 20(1): 228, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209095

RESUMO

BACKGROUND: One-carbon metabolism, which includes the folate and methionine cycles, involves the transfer of methyl groups which are then utilised as a part of multiple physiological processes including redox defence. During the methionine cycle, the vitamin B12-dependent enzyme methionine synthetase converts homocysteine to methionine. The enzyme S-adenosylmethionine (SAM) synthetase then uses methionine in the production of the reactive methyl carrier SAM. SAM-binding methyltransferases then utilise SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. RESULTS: We describe a novel SAM methyltransferase, RIPS-1, which was the single gene identified from forward genetic screens in Caenorhabditis elegans looking for resistance to lethal concentrations of the thiol-reducing agent dithiothreitol (DTT). As well as RIPS-1 mutation, we show that in wild-type worms, DTT toxicity can be overcome by modulating vitamin B12 levels, either by using growth media and/or bacterial food that provide higher levels of vitamin B12 or by vitamin B12 supplementation. We show that active methionine synthetase is required for vitamin B12-mediated DTT resistance in wild types but is not required for resistance resulting from RIPS-1 mutation and that susceptibility to DTT is partially suppressed by methionine supplementation. A targeted RNAi modifier screen identified the mitochondrial enzyme methylmalonyl-CoA epimerase as a strong genetic enhancer of DTT resistance in a RIPS-1 mutant. We show that RIPS-1 is expressed in the intestinal and hypodermal tissues of the nematode and that treating with DTT, ß-mercaptoethanol, or hydrogen sulfide induces RIPS-1 expression. We demonstrate that RIPS-1 expression is controlled by the hypoxia-inducible factor pathway and that homologues of RIPS-1 are found in a small subset of eukaryotes and bacteria, many of which can adapt to fluctuations in environmental oxygen levels. CONCLUSIONS: This work highlights the central importance of dietary vitamin B12 in normal metabolic processes in C. elegans, defines a new role for this vitamin in countering reductive stress, and identifies RIPS-1 as a novel methyltransferase in the methionine cycle.


Assuntos
Sulfeto de Hidrogênio , Ácidos Nucleicos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Carbono/metabolismo , Ditiotreitol/metabolismo , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ligases/metabolismo , Lipídeos , Mercaptoetanol/metabolismo , Metionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Vitaminas/metabolismo
5.
Arch Biochem Biophys ; 726: 109232, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660297

RESUMO

Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-.


Assuntos
Mitocôndrias Cardíacas , Superóxidos , Animais , Antimicina A/metabolismo , Antimicina A/farmacologia , Citocromos b/metabolismo , Citocromos c/metabolismo , Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Elétrons , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Oxirredução , Ratos , Substâncias Redutoras/metabolismo , Succinatos/metabolismo , Succinatos/farmacologia , Ácido Succínico , Superóxidos/metabolismo , Ubiquinona/análogos & derivados
6.
J Bacteriol ; 204(7): e0007822, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35695516

RESUMO

Anaerobic methanotrophic archaea (ANME), which oxidize methane in marine sediments through syntrophic associations with sulfate-reducing bacteria, carry homologs of coenzyme F420-dependent sulfite reductase (Fsr) of Methanocaldococcus jannaschii, a hyperthermophilic methanogen from deep-sea hydrothermal vents. M. jannaschii Fsr (MjFsr) and ANME-Fsr belong to two phylogenetically distinct groups, FsrI and FsrII, respectively. MjFsrI reduces sulfite to sulfide with reduced F420 (F420H2), protecting methyl coenzyme M reductase (Mcr), an essential enzyme for methanogens, from sulfite inhibition. However, the function of FsrIIs in ANME, which also rely on Mcr and live in sulfidic environments, is unknown. We have determined the catalytic properties of FsrII from a member of ANME-2c. Since ANME remain to be isolated, we expressed ANME2c-FsrII in a closely related methanogen, Methanosarcina acetivorans. Purified recombinant FsrII contained siroheme, indicating that the methanogen, which lacks a native sulfite reductase, produced this coenzyme. Unexpectedly, FsrII could not reduce sulfite or thiosulfate with F420H2. Instead, it acted as an F420H2-dependent nitrite reductase (FNiR) with physiologically relevant Km values (nitrite, 5 µM; F420H2, 14 µM). From kinetic, thermodynamic, and structural analyses, we hypothesize that in FNiR, F420H2-derived electrons are delivered at the oxyanion reduction site at a redox potential that is suitable for reducing nitrite (E0' [standard potential], +440 mV) but not sulfite (E0', -116 mV). These findings and the known nitrite sensitivity of Mcr suggest that FNiR may protect nondenitrifying ANME from nitrite toxicity. Remarkably, by reorganizing the reductant processing system, Fsr transforms two analogous oxyanions in two distinct archaeal lineages with different physiologies and ecologies. IMPORTANCE Coenzyme F420-dependent sulfite reductase (Fsr) protects methanogenic archaea inhabiting deep-sea hydrothermal vents from the inactivation of methyl coenzyme M reductase (Mcr), one of their essential energy production enzymes. Anaerobic methanotrophic archaea (ANME) that oxidize methane and rely on Mcr, carry Fsr homologs that form a distinct clade. We show that a member of this clade from ANME-2c functions as F420-dependent nitrite reductase (FNiR) and lacks Fsr activity. This specialization arose from a distinct feature of the reductant processing system and not the substrate recognition element. We hypothesize FNiR may protect ANME Mcr from inactivation by nitrite. This is an example of functional specialization within a protein family that is induced by changes in electron transfer modules to fit an ecological need.


Assuntos
Archaea , Nitrito Redutases , Anaerobiose , Metano/metabolismo , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Substâncias Redutoras/metabolismo , Riboflavina/análogos & derivados
7.
Photosynth Res ; 145(2): 135-143, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32602041

RESUMO

Ca-depleted photosystem II membranes (PSII[-Ca]) do not contain PsbP and PsbQ proteins protecting the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). Therefore, the Mn ions in the PSII(-Ca) membranes can be reduced by exogenous bulky reductants or the charged reductant Fe(II). We have recently found that the resistance of Mn ions in the OEC to the Fe(II) action is pH dependent and that this reductant is less effective at pH 5.7 than at pH 6.5 (Semin et al. J Photochem Photobiol B 178:192, 2018). Taking these data into account, we investigated the photoinhibition in different PSII membranes at pH 5.7 and 6.5 and found that the resistance to photoinhibition of PSII and PSII(-Ca) membranes with a Mn cluster is higher at pH 5.7 than at pH 6.5, whereas the resistance of the Mn-depleted PSII membranes is pH independent. In thylakoids, light generates the transmembrane ΔpH, leading to the acidulation of lumen that results in pH 5.7. The uncouplers (NH4Cl or nigericin) that significantly prevent acidulation increase the rate of PSII photoinhibition in thylakoids. We suggest that the structural transition in the OEC at pH 5.7 plays a role of a built-in mechanism increasing the resistance of OEC to photoinhibition under illumination, since it is accompanied by a pH decrease in lumen to 5.7. The coincidence of these pH values, i.e. lumen pH under illumination and pH of the maximal resistance of the Mn cluster to the reduction by reductants, can point at the pH-dependent mechanism of PSII self-protection from photoinactivation.


Assuntos
Manganês/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Substâncias Redutoras/metabolismo , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Luz , Oxirredução , Complexo de Proteína do Fotossistema II/efeitos da radiação , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
8.
Int J Biol Macromol ; 156: 180-185, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289426

RESUMO

Transformation of renewable biomass into value-added chemicals and biofuels has evolved to be a vital field of research in recent years. Accurate estimation of reducing sugars post pretreatment of lignocellulosic biomass has been very inconsistent. For a few decades, 3,5-dinitrosalicylic acid (DNS) assay has been widely employed for the estimation of reducing sugars derived from pretreatment of lignocellulosic biomass. This assay tests for the presence of free carbonyl group (C=O), the so-called reducing sugars. This involves the oxidation of the aldehyde functional group present to the corresponding acid while DNS is simultaneously reduced to 3-amino-5-nitrosalicylic acid under alkaline conditions. However, the presence of other active carbonyl groups can potentially also react with DNS leading to incorrect yields of reducing sugars. Therefore, a detailed study has been carried out to evaluate the influence of active carbonyl compounds like furfural and 5-hydroxymethylfurfural (5-HMF) in the overall estimation of reducing sugars (glucose, xylose and arabinose) by DNS assay. In addition to this, reducing sugars estimation in the presence of furans were also investigated, it reveals that reducing sugars estimation was found to be 68% higher than actual sugars. Therefore, current findings strongly indicate that the employment of DNS assay for quantifying the reducing sugars in the presence of furans is not appropriate.


Assuntos
Furaldeído/análogos & derivados , Furaldeído/metabolismo , Substâncias Redutoras/química , Substâncias Redutoras/metabolismo , Salicilatos/química , Salicilatos/metabolismo , Açúcares/análise , Aldeídos/análise , Artefatos , Calibragem , Cromatografia Líquida de Alta Pressão , Colorimetria , Furaldeído/análise , Furaldeído/química , Lignina/química , Espectrofotometria , Açúcares/química
9.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726728

RESUMO

The development of Pt(IV) anticancer prodrugs to overcome the detrimental side effects of Pt(II)-based anticancer drugs is of current interest. The kinetics and reaction mechanisms of the reductive activation of the carboplatin Pt(IV) prodrug cis,trans-[Pt(cbdca)(NH3)2Cl2] (cbdca = cyclobutane-1,1-dicarboxylate) by the major small-molecule reductants in human plasma were analyzed in this work. The reductants included ascorbate (Asc), the thiol-containing molecules L-cysteine (Cys), DL-homocysteine (Hcy), and glutathione (GSH), and the dipeptide Cys-Gly. Overall second-order kinetics were established in all cases. At the physiological pH of 7.4, the observed second-order rate constants k' followed the order Asc << Cys-Gly ~ Hcy < GSH < Cys. This reactivity order together with the abundances of the reductants in human plasma indicated Cys as the major small-molecule reductant in vivo, followed by GSH and ascorbate, whereas Hcy is much less important. In the cases of Cys and GSH, detailed reaction mechanisms and the reactivity of the various protolytic species at physiological pH were derived. The rate constants of the rate-determining steps were evaluated, allowing the construction of reactivity-versus-pH distribution diagrams for Cys and GSH. The diagrams unraveled that species III of Cys (-SCH2CH(NH3+)COO-) and species IV of GSH (-OOCCH(NH3+)CH2CH2CONHCH(CH2S-)- CONHCH2COO-) were exclusively dominant in the reduction process. These two species are anticipated to be of pivotal importance in the reduction of other types of Pt(IV) prodrugs as well.


Assuntos
Carboplatina , Plasma/metabolismo , Pró-Fármacos , Substâncias Redutoras/metabolismo , Carboplatina/química , Carboplatina/farmacocinética , Humanos , Cinética , Pró-Fármacos/química , Pró-Fármacos/farmacocinética
10.
Appl Environ Microbiol ; 86(1)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31628148

RESUMO

Use of hydrogen gas (H2) as an electron donor is common among free-living chemolithotrophic microorganisms. Given the presence of this dissolved gas at deep-sea hydrothermal vents, it has been suggested that it may also be a major electron donor for the free-living and symbiotic chemolithoautotrophic bacteria that are the primary producers at these sites. Giant Riftia pachyptila siboglinid tubeworms and their symbiotic bacteria ("Candidatus Endoriftia persephone") dominate many vents in the Eastern Pacific, and their use of sulfide as a major electron donor has been documented. Genes encoding hydrogenase are present in the "Ca Endoriftia persephone" genome, and proteome data suggest that these genes are expressed. In this study, high-pressure respirometry of intact R. pachyptila and incubations of trophosome homogenate were used to determine whether this symbiotic association could also use H2 as a major electron donor. Measured rates of H2 uptake by intact R. pachyptila in high-pressure respirometers were similar to rates measured in the absence of tubeworms. Oxygen uptake rates in the presence of H2 were always markedly lower than those measured in the presence of sulfide, as was the incorporation of 13C-labeled dissolved inorganic carbon. Carbon fixation by trophosome homogenate was not stimulated by H2, nor was hydrogenase activity detectable in these samples. Though genes encoding [NiFe] group 1e and [NiFe] group 3b hydrogenases are present in the genome and transcribed, it does not appear that H2 is a major electron donor for this system, and it may instead play a role in intracellular redox homeostasis.IMPORTANCE Despite the presence of hydrogenase genes, transcripts, and proteins in the "Ca Endoriftia persephone" genome, transcriptome, and proteome, it does not appear that R. pachyptila can use H2 as a major electron donor. For many uncultivable microorganisms, omic analyses are the basis for inferences about their activities in situ However, as is apparent from the study reported here, there are dangers in extrapolating from omics data to function, and it is essential, whenever possible, to verify functions predicted from omics data with physiological and biochemical measurements.


Assuntos
Crescimento Quimioautotrófico/fisiologia , Gammaproteobacteria/metabolismo , Hidrogênio/metabolismo , Fontes Hidrotermais , Poliquetos/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Genes Bacterianos , Genoma Bacteriano , Interações entre Hospedeiro e Microrganismos/fisiologia , Hidrogenase/genética , Hidrogenase/metabolismo , Fontes Hidrotermais/química , Fontes Hidrotermais/microbiologia , Poliquetos/metabolismo , Substâncias Redutoras/metabolismo , Simbiose
11.
J Inorg Biochem ; 199: 110770, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31336257

RESUMO

Serotonin (5-HT) is a neurotransmitter that is derived from tryptophan. Owing to a hydroxyl group attached to the indole nucleus, 5-HT exhibits a considerably higher redox activity than tryptophan. To gain insight into the biological relevance of the redox activity of 5-HT, the effect of Cu(I)-binding ligands on the 5-HT-mediated copper reduction was investigated. The d-d transition band of Cu(II) complexed with glycine [Cu(II)-Gly2] was not affected by addition of 5-HT alone but was diminished when a thioether-containing compound coexists with 5-HT. Concomitant with disappearance of the d-d transition band of Cu(II)-Gly2, the π-π* transition band of 5-hydroxyindole of 5-HT exhibits a red-shift which is consistently explained by oxidation of 5-HT and subsequent formation of a dimeric species. The redox reactions between 5-HT and copper are also accelerated by a peptide composed of a methionine (Met)-rich region in the extracellular domain of an integral membrane protein, copper transporter 1 (Ctr1). Since Ctr1 transports copper across the plasma membrane with specificity for Cu(I), reduction of extracellular Cu(II) to Cu(I) is required for copper uptake by Ctr1. Metalloreductases that can donate Cu(I) for Ctr1 have been identified in yeast but not yet been found in mammals. The results of this study indicate that the Met-rich region in the N-terminal extracellular domain of Ctr1 promotes the 5-HT-mediated Cu(II) reduction in order to acquire Cu(I) via a non-enzymatic process.


Assuntos
Cobre/química , Cobre/metabolismo , Serotonina/química , Serotonina/metabolismo , Proteínas de Transporte de Cobre/química , Proteínas de Transporte de Cobre/metabolismo , Eletroquímica , Metionina/química , Metionina/metabolismo , Neurotransmissores/química , Neurotransmissores/metabolismo , Substâncias Redutoras/química , Substâncias Redutoras/metabolismo , Triptofano/química , Triptofano/metabolismo
12.
J Inorg Biochem ; 199: 110759, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299377

RESUMO

Copper is involved in several biological processes. The static and labile copper pools are controlled by means of a network of influx and efflux transporters, storage proteins, chaperones, transcription factors and small molecules as glutathione (GSH), which contributes to the cell reducing environment. To follow the fate of intracellular copper labile pool, a variant of human apocarbonic anhydrase has been proposed as fluorescent probe to monitor cytoplasmic Cu2+. Aware that in this cellular compartment copper ion is present as Cu+, electron spin resonance technique (ESR) was used to ascertain whether (bovine or human) carbonic anhydrase (CA) was able to accommodate Cu+ in the same sites occupied by Cu2+, in the presence of naturally occurring reducing agents such as ascorbate and GSH. Our ESR results on Cu2+ complexes with CA allow for a complete characterization of the two metal binding sites of the protein in solution. The use of the reported affinity constants of zinc in the catalytic site and of Cu2+ in the peripheral and catalytic site, allow us to obtain the speciation of copper species mimicking the spectroscopic study conditions. The different Cu2+ coordination features in the catalytic and the peripheral (the N-terminus cleft mouth) binding sites influence the chemical reduction effect of the two main naturally occurring reductants. Ascorbate reversibly reduces the Cu2+ complex with CA, while glutathione irreversibly induces the formation of Cu2+ complex with its oxidized form (GSSG). Our results questioned the use of CA as intracellular Cu2+ sensor. Furthermore, translating these findings to intracellular environment, the conversion of GSH in GSSG can significantly alter the metallostasis.


Assuntos
Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Cobre/química , Substâncias Redutoras/metabolismo , Animais , Ácido Ascórbico/metabolismo , Sítios de Ligação , Catálise , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Glutationa/metabolismo , Humanos , Oxirredução , Oxigênio/metabolismo , Ligação Proteica
13.
Inorg Chem ; 58(6): 3851-3860, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30843385

RESUMO

The reduction mechanism of Pt(IV) anticancer prodrugs, still today a matter of debate, assisted by one of the dominant reductants in human plasma, that is l-ascorbic acid in its monodeprotonated form, has been computationally examined in this work. In order to check what should be the influence on the reduction rate of the identity of the ligands in axial and equatorial position, both cisplatin and oxaliplatin derivatives have been studied, varying the ligands in axial position in connection with the role they should play as bridges, trans leaving species, and proton acceptors. OH, OAc, Cl, and Br ligands have been tested as bridging/leaving ligands, whereas Cl and aspirin have been used as trans labile and less labile ligands, respectively. The most recent theoretical and experimental investigations have demonstrated that the generally adopted grouping of reduction mechanisms into inner- and outer-sphere does not properly take into account all the viable alternatives. Therefore, inner-sphere mechanisms, classified as ligand-bridged, ligand-bridged-H transfer and enolate ß-carbon attack, have been explored for all the complexes under investigation. Concerning the outer-sphere mechanism, redox potentials have been calculated adopting a recently proposed procedure based on the separation between electrochemical and chemical events to evaluate their propensity to be reduced. Moreover, according to the hypothesis that the outer-sphere reduction mechanism involves the sequential addition of two electrons causing the formation of a Pt(III) intermediate, the possibility that singlet and triplet pathways can cross for the Pt(IV) cisplatin derivative having two chlorido ligands in axial position has been explored in detail. Results show that the mechanism indicated as base-assisted outer sphere can become competitive with respect to the inner one if two singlet-triplet spin inversions occur. Results presented here are helpful in addressing synthetic strategies as they show that Pt(IV) prodrugs propensity to be reduced can be properly tuned and give indications on how this aim can be accomplished.


Assuntos
Antineoplásicos/metabolismo , Ácido Ascórbico/metabolismo , Compostos Organoplatínicos/metabolismo , Pró-Fármacos/metabolismo , Substâncias Redutoras/metabolismo , Antineoplásicos/química , Cisplatino/química , Cisplatino/metabolismo , Transporte de Elétrons , Humanos , Modelos Moleculares , Compostos Organoplatínicos/química , Oxirredução , Pró-Fármacos/química , Termodinâmica
14.
Microb Pathog ; 125: 150-157, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30217515

RESUMO

Low cost and an easy technique for the synthesis of palladium nanoparticles (PdNPs) was developed. Glucosamine was used to stabilize palladium precursor (PdCl2) into palladium nanoparticles. Several analytical techniques were used for the determination of morphology, crystalline structure; size, capping, and composition of synthesize palladium nanoparticles. The UV-visible spectroscopy SPR peak (Surface Plasmon Resonance) at 284 nm revealed synthesis of PdNPs. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) studies proved the elemental composition and crystalline structure of the synthesized palladium nanoparticles respectively. The average particle sizes (5.5 nm) were obtained by using the 1 M glucosamine solution, with a fixed amount of PdCl2 (4 mM). Moreover, the as synthesized PdNPs was evaluated against Gram negative bacterial E. which shows tremendous antibacterial activity as compare to tobramycin standard antibiotics. It's mechanistically found that PdNPs damage cell membrane and caused imbalance of metabolism system of the cell as a result production of reactive oxygen species (ROS). Thus, these finding revealed that cells become leaky and all organelles come out from cells, finally caused death of the E. coli. Addition, the as prepared PdNPs also showed excellent catalytic activities toward reduction of methylene blue and 4-nitrophenol.Thus, glucosamine mediated PdNPs having dual functions biomedical as well as intoxicating catalyst for industries.


Assuntos
Antibacterianos/metabolismo , Glucosamina/metabolismo , Nanopartículas Metálicas/ultraestrutura , Paládio/metabolismo , Substâncias Redutoras/metabolismo , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Excipientes/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria por Raios X , Análise Espectral , Ressonância de Plasmônio de Superfície , Difração de Raios X
15.
mBio ; 8(5)2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042499

RESUMO

Upon entry into the host cell cytosol, the facultative intracellular pathogen Listeria monocytogenes coordinates the expression of numerous essential virulence factors by allosteric binding of glutathione (GSH) to the Crp-Fnr family transcriptional regulator PrfA. Here, we report that robust virulence gene expression can be recapitulated by growing bacteria in a synthetic medium containing GSH or other chemical reducing agents. Bacteria grown under these conditions were 45-fold more virulent in an acute murine infection model and conferred greater immunity to a subsequent lethal challenge than bacteria grown in conventional media. During cultivation in vitro, PrfA activation was completely dependent on the intracellular levels of GSH, as a glutathione synthase mutant (ΔgshF) was activated by exogenous GSH but not reducing agents. PrfA activation was repressed in a synthetic medium supplemented with oligopeptides, but the repression was relieved by stimulation of the stringent response. These data suggest that cytosolic L. monocytogenes interprets a combination of metabolic and redox cues as a signal to initiate robust virulence gene expression in vivoIMPORTANCE Intracellular pathogens are responsible for much of the worldwide morbidity and mortality from infectious diseases. These pathogens have evolved various strategies to proliferate within individual cells of the host and avoid the host immune response. Through cellular invasion or the use of specialized secretion machinery, all intracellular pathogens must access the host cell cytosol to establish their replicative niches. Determining how these pathogens sense and respond to the intracellular compartment to establish a successful infection is critical to our basic understanding of the pathogenesis of each organism and for the rational design of therapeutic interventions. Listeria monocytogenes is a model intracellular pathogen with robust in vitro and in vivo infection models. Studies of the host-sensing and downstream signaling mechanisms evolved by L. monocytogenes often describe themes of pathogenesis that are broadly applicable to less tractable pathogens. Here, we describe how bacteria use external redox states as a cue to activate virulence.


Assuntos
Glutationa/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/patogenicidade , Substâncias Redutoras/metabolismo , Fatores de Virulência/biossíntese , Animais , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas/métodos , Meios de Cultura/química , Modelos Animais de Doenças , Listeriose/microbiologia , Listeriose/patologia , Camundongos , Fatores de Terminação de Peptídeos/metabolismo , Ativação Transcricional/efeitos dos fármacos , Virulência
16.
J Biol Chem ; 292(38): 15661-15669, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784660

RESUMO

Nitrogenase reduces dinitrogen (N2) to ammonia in biological nitrogen fixation. The nitrogenase Fe protein cycle involves a transient association between the reduced, MgATP-bound Fe protein and the MoFe protein and includes electron transfer, ATP hydrolysis, release of Pi, and dissociation of the oxidized, MgADP-bound Fe protein from the MoFe protein. The cycle is completed by reduction of oxidized Fe protein and nucleotide exchange. Recently, a kinetic study of the nitrogenase Fe protein cycle involving the physiological reductant flavodoxin reported a major revision of the rate-limiting step from MoFe protein and Fe protein dissociation to release of Pi Because the Fe protein cannot interact with flavodoxin and the MoFe protein simultaneously, knowledge of the interactions between flavodoxin and the different nucleotide states of the Fe protein is critically important for understanding the Fe protein cycle. Here we used time-resolved limited proteolysis and chemical cross-linking to examine nucleotide-induced structural changes in the Fe protein and their effects on interactions with flavodoxin. Differences in proteolytic cleavage patterns and chemical cross-linking patterns were consistent with known nucleotide-induced structural differences in the Fe protein and indicated that MgATP-bound Fe protein resembles the structure of the Fe protein in the stabilized nitrogenase complex structures. Docking models and cross-linking patterns between the Fe protein and flavodoxin revealed that the MgADP-bound state of the Fe protein has the most complementary docking interface with flavodoxin compared with the MgATP-bound state. Together, these findings provide new insights into the control mechanisms in protein-protein interactions during the Fe protein cycle.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Flavodoxina/metabolismo , Ferro/metabolismo , Nitrogenase/metabolismo , Substâncias Redutoras/metabolismo , Sequência de Aminoácidos , Azotobacter vinelandii/enzimologia , Simulação de Acoplamento Molecular , Nitrogenase/química , Ligação Proteica , Conformação Proteica , Proteólise
17.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 997-1003, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28473295

RESUMO

The reaction mechanism of multicopper oxidase (MCO) to reduce dioxygen to water has not been fully understood yet in spite of extensive studies including on the intermediate I (peroxide intermediate) and intermediate II (native intermediate with an O-centered structure at the trinuclear copper center (TNC)). We performed the Phe mutations at the four amino acids, Tyr69, Cys138, Trp139, and Tyr496 located in the outer-sphere of TNC in CueO at the aim of studying whether they play a role as the fourth electron donor to dioxygen or not. Spectral properties and enzymatic activities of CueO were sparingly affected or not affected by the mutations at these putative electron donors. Of the targeted four amino acids Trp139 is in a d-π interaction distance with one of T3Cus and drives stepwise formation and release of water molecules by making two T3Cus non-equivalent. However, contribution of a radical species derived from Trp139 has not been observed in the formation and decay processes of the reaction intermediates. The present study strongly suggests that the amino acids located in the outer-sphere of TNC are not utilized as electron donor in the reduction of dioxygen to water by the three-domain MCO, CueO, differing from cytochrome oxidase and SLAC, a two-domain MCO, in which reaction participation of an uncoordinated Tyr residue has been proposed. SUMMARY: We performed the Phe mutations at the four amino acids, Tyr69, Cys138, Trp139 and Tyr496 located in the outer-coordination sphere of the trinuclear copper center in a three-domain multicopper oxidase, CueO to ascertain whether they function as an electron donor or not in the four-electron reduction of dioxygen. Characterizations of the mutants and reactions did not suggest participation of the targeted amino acids, indicating that CueO follows a different reaction mechanism from that of a two-domain multicopper oxidase, SLAC, in which reaction participation of an uncoordinated Tyr has been suggested.


Assuntos
Aminoácidos/metabolismo , Cobre/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , Sítios de Ligação/fisiologia , Elétrons , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutação/genética , Oxirredução
18.
J Am Chem Soc ; 138(49): 15833-15836, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960347

RESUMO

Reduced nicotinamide adenine dinucleotide (NADH) can generate a ruthenium-hydride intermediate that catalyzes the reduction of O2 to H2O2, which endows it with potent anticancer properties. A catalyst that could access a Ru-H intermediate using oxidized nicotinamide adenine dinucleotide (NAD+) as the H- source, however, could draw upon a supply of reducing equivalents 1000-fold more abundant than NADH, which would enable significantly greater H2O2 production. Herein, it is demonstrated, using the reduction of ABTS•- to ABTS2-, that NAD+ can function as a reductant. Mechanistic evidence is presented that suggests a Ru-H intermediate is formed via ß-hydride elimination from a ribose subunit in NAD+. The insight gained from the heretofore unknown ability of NAD+ to function as a reductant and H- donor may lead to undiscovered biological carbohydrate oxidation pathways and new chemotherapeutic strategies.


Assuntos
NAD/metabolismo , Substâncias Redutoras/metabolismo , Estrutura Molecular , NAD/química , Oxirredução , Substâncias Redutoras/química
19.
Prion ; 10(3): 251-61, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27282252

RESUMO

The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process.


Assuntos
Príons/metabolismo , Príons/patogenicidade , Scrapie/metabolismo , Scrapie/transmissão , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Cultura de Células , Linhagem Celular , Detergentes/metabolismo , Congelamento , Cinética , Camundongos , Príons/análise , Substâncias Redutoras/metabolismo , Scrapie/patologia , Temperatura
20.
Talanta ; 155: 212-5, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27216675

RESUMO

Recently a covalent peroxidase-mimicking DNAzyme (cPMDNAzyme) with the improved catalytic activity was prepared. Here we demonstrate that hydrogen peroxide, the oxidant substrate of cPMDNAzyme is an inactivating agent of this catalyst. Presence of the reductant substrate, 2,2'-azino-bis(3-ethylbenthothiazoline-6-sulfonic acid (ABTS) prevents the inactivation of cPMDNAzyme. The experimental conditions (pH-optimum, concentrations of ABTS and H2O2) for the determination of cPMDNAzyme activity were optimized that allows a construction of the colorimetric cPMDNAzyme-based biosensors and assays with improved sensitivity.


Assuntos
Benzotiazóis/metabolismo , Materiais Biomiméticos/metabolismo , DNA Catalítico/metabolismo , Peróxido de Hidrogênio/farmacologia , Peroxidase/metabolismo , Substâncias Redutoras/metabolismo , Ácidos Sulfônicos/metabolismo , Benzotiazóis/farmacologia , Biocatálise , Ativação Enzimática/efeitos dos fármacos , Oxirredução , Substâncias Redutoras/farmacologia , Ácidos Sulfônicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...